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Abstract

The raoport talls into six sections together with
five appendices, The work reported in each aof the
first five sections is described in detail in the
corresponding appendix, which takes the form of a paper
accepted for publicztion by a research periodical,

The first investigation studies rotatable
partitions, i,e, those d-dimensional partitions whose
representations are invariant under rotation of the
axes of coordinates, If d is a power of a prime p,
the number of irrotatable partitions is divisible by p,
The number of rotatable partitions of small n is small
and easily calculated, Consequences include a
convenient check of the total number of partitions and
a simple proof of the recently discovered fact that
the long conjectured form of the gencrating function
of solid partitions is mistaken,

In the sec' id section I find a general identity
involving & -fu .:tions, Particular cases of this have
applications in partition theory,

The third section introduces a new combinatorial
idea, the n-stack, gives generating functions for the
number of n-stacks under certain restrictions and under
no restriciions and finds asymptotic values for these
numbers for large n,

The fourth appendix is a short, semi-expository
paper correcting a statement by another author that a
particular problem in partition theory is unsolved.

To do this I give a new and simple derivation of the
behaviour for large n of the number of partitions of n
into just k parts, . This has a picturesgue
interpretr:ion in terms of railroad trucks,




The fifth section finds necessairy and sufficient
conditions that almost all graphs of a given kind on n
unlabelled nodes shall be connected, This condition
is closely related to that found earlier for the
labelled case,

The sixth section reports preliminary investigations
into the asymptotic expansions of,and relations between,
the number ¢of connected and disconnected graphs of a
glven kind on n labelled and on n unlabelled nodes when
n is large, This work is at present far from complete
but looks promising.
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The generating function for the number of
solid partitions: rotatable partitions

1, A linear partition of a positive integer is
L a solutlion in positive integers of the equation

—
n = m (m, 2m_ ),
HSi h h h+1

If p(n) is the number of such partitions, the generating
function 1is easily seen to be

o0 @ .
1+ S p(x® = TTa-x¥-1
n=1 k=1

(see, for example, [12]). A plane partition is a
solution of

n = m 2 max ‘s .
g;;éo hi  (Mpy 2 maxlmg g 3mp 5 g))

If q(n) is the number of such partitions, then

0 n 20 k, -k
(1,1) 1+ 5> _q(n)X = ‘ [(1-x™"",
n=1 k=1
as was first proved by Macmahon [14], His proof is

lengthy and Chaundy [2] produced a simpler (but still
fairly complicated) proof,




v i
Let r(n) be the number of solid purtitions, 1.c,
solutions of

(1.2) n= Y nm

hy1,j i

Mpgg 2 P0X0My g, ™h, 141, 5™k, 5410

It has long been conjectured (but without great
confidence) that

8,9] (v 0}
(1.3) 1+ 3 r(mx" = '[—T(l_xk)—k(km/z.
n=1 k=1

Just before the contract period opened Dr A,0,L, Atkin
(then of the Atlas Computer Laboratory at Chilton,
Berkshire, England and now of the University of
Maryland) wrote to tell mc that he and othurs had
proved (1.3) false, essentially by evaluating the
coefficients of the smaller powers of X on eoach side,

The coefficients apreed up to x5, but r(G) = 140

while the coefficient of XG in the product on the right-
hand side of (1.,3) is 141,

Atkin and his collaborators (I.G, Macdonald and
J, Mackay) used a computer to calculate the number of
d-dimensional partitions of fairly small n, The
(d+l1)-dimensional partitions intc unit parts correspond
one-to-one to the d-dimensional partitions into parts
of any size, I picked out those partitions which,
when expressed diogrammatically, are invariable under
rotation of the axes of coordinates, 1 found that, if

I




d = pt, where p is o prime, then the number of
d-dimensional partitions of auy m which are not
rotatable is divisible by p, Heunce the total number
of d-dimensionsl partitions of n is congruent (mod p)

to the number of rotatablo partitions, For moderate
sized n the rotatable partitions are very few in
number and easily identified and counted, Yor = 3

and n = 8 there arc only (wo; for d = 4 and 1 =« 6 and
unit parts there are none,

My result enabled me to check (and find copying
errors in) a table of numbers of partitionc calculated
on & computer by meons of a programme written by
Mackay, It also provides & very short proosf that the
product on the right-hand side of (1.3) is not the
generating function for 3-dimensional partitions, It

will be observed that d = pt or d + 1 = pt for every
d £ 13, so the result is useful for all dimensions up
to 13, The result may yield information about the
structure of the generating function for r(n),

My method and results (including two tables) are
written up in Appendix 1 to this report; this has been
accepted for publication in the Journal of the lLondon
Mathematical Society,

In [24] I found an expression for #(a,b,c), the

generating function for the number of solutions of
{1,2) subject to the additional conditions that

Bygp $ 8y Byoy £ by, Byyy £¢, myy =0 (h+1>3),

I did a little further work this year trying to
determine 7 (a,b,c,d), the generating function for the
number of msolutions of (1,2) subject to

Byyy € 8, Bypy € b, Mgy S, My £4d, My =0
(h>2 or i>2).



The calculations boecame very complicated, The function
7 (a,b,c) had been expressed (and I was s sing to
express ) (a,b,c,d)) in terms of the funciion gﬂ, where

3 k-1
50-1, 5‘-11(14) y 5 g =0 (a>0),

It seemed desirable to devote some study to the function

Ea and its properties and relations and this and its
consequences I describe in sections 2,3 and 4, Other-~

wise I abandoned work on +)(a,b,c,d) for the present,
While I am still sure that this is worth completing when
time permits, it seemed good policy to pursue the more
immediately rewarding lines which opened up,

The disprouf of (1,3) is not, in this connection,
a severe blow, The conjecture had long ceased to be a
very plausible one, Again the correct form of the
generating function for the number of plane partitions
in (1.1) has been known for S50 years but this knowledge
has 80 far been of no help whatever in finding a simple,

transparent proof of the result,




An identity in E -functions

2, Wa have

-1

lim (1-%)% 5, =(a) (a >0}

X->1

and so

lim ;a 52 - iﬁfb)!
X1 gn+b alb!

the binomial coefficient which is also the number of
combinations of a+b things taken a at a time, There
is thus a correspondence between certain identities
involving b -functions and others involving binomial
coelficlieats,

I managed to find the & -identities corresponding
to certain well-known identities in binomial coefficients,
Several turned out to be particular cases of the identity

u(u-k) -1
(2,1 E;:x 5u;u_k5r_ugs,ugt_u§r+s+t—u—k

grgr—kgsgs—kgtgt-k

5s+t-—k5t+r—kgr+ﬂ-k




The prooi of this and the deduction from it of several
results for & functions and for binomial coefficients
(the last well-known) are given in Appendix 2, whig

has been accepted for publication in the Arerican
Mathematical Monthly,

There remains the question of when an identity
involving binomial coefficlents can be generalised to
one in % -functions, {The converse question is of
course trivial), . Answers may well be either trivial
or unobtainable, but it is just possible that there may
be scue more significant results obtainable,

An example of a well-known identity which does
not generalise 1u

nk+t+n n 1 ik+i+t (n-1) (k+1)
-t 2 e
n img tRHIH i n-i

Taking n = 2, I have proved that there are no indices
Al,Az,ka such that

Ay
52§2k+§ - (axbH 2 X 5151k+t52-1§k(2-1)
Sokst+z i=0 g1k+i+t-1§(2-i)(k+1)

10




Stacks

3. If we put k = 1 and let £,t —» 00 in the
identity (2.1) of sectinn 2, we have

u(u-1)
tzu:x LELHRE- S 5 §x°-1’

an identity which can be proved quite simply directly.
Attempts to interpret this in combinatorial terms led
to a study of structures which I call "stacks", An

n-stack is an arrangement of n nodes in rows such that
no row overlaps the one below it, thus:-

I have found the generating functions for
sr(b,t,n), the number of stacks with n nodes, r rows,

t nodes in the top row and b in the base and for
various similar enumerative functioms, In particular,

(3.1) ;s(n)xn - gxr;rgr_l :

11




Most of this was fairly straightforward, but a more
difficult problem was that of finding an asymptotic
approximation for s(n) for large n, since the form of
the generating function on the right of (3,1) does not
lend itself to the usual "circle" method of Hardv and
Ramanujan, However, first by manipulation of
generating functions and then by an alternative direct
"graphical' argument, I proved that

(3.2) a(n) = s(n) +s(.,1,041),

where s(,,1,n+1) is the number of (n+l)-stacks with a
.single node in the top row and q(n) is defined by

[0,8) o0
1+ 5 qmx® = T]a-x"2
n=1 k=1

(This q(n) is difterent from that of §1.) From (3.2)
I could deduce that

a(n-1) € 2s(n) < q(n),

The asymptotic expansion of q(n) is known ([13] and
[21]) and s0 we can deduce that

S(n) = 8'1(33ns)'1/4 exp[ZWvKn/3)3§1+0(n'b)} )

All this work appears in Appendix 3, a paper which has
been accepted for publication by the Quarterly Journal
of Mathematics,

12
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The reader's attention is drawn to the
"Note added at proof stage' at the end of
Appendix 3 (pp. 71,72). This refers to
information received since the end of the
contract period, It shows that, while
another author studied structures equivalent
to my unrestricted n-stacks in 1% .1, his
results overlap minimally with mine and his
methods not at all, There seems to be some

possibility of applications in statistical
mechanics,

13




Partiticons iato k parts

4, Let pk(n) be the number of partitions of n
into juaet k parts and qk(n) the number into at most k
parts,  We have q (n) = p, (n:k) 80 that anly one of
these two functions need be studied, Again xksk and
§k are the generating functions of pk(n) and qk(n),

In a recent article [3] on arrangements, Ceollins
described the problem of determining pk(n) and qk(n)

as '"'an unsolved problem in partitions", This is, of
course, nonsense, as the form of pk(n) has been studied

at length by Sylvester [19], Glaisher [8] and several
others [9,18] including me fzo]. But these papers are
fairly complicated and most text-books on enumeration
describe how to determine pk(n) only for the first few

values of Kk, It seemed worthwhile to write a short
article (Appendix 4, accepted for publication by the
Mathematical Gazette) showing how quite simple and
elementary methods of partial fractions give the form of
pk(n) as a semi-polynomial and also its asymptotic value

for large n, This is perhaps as much exposition as
research, but probzbly worth doing,

14



Asymptotic consequences of a reiation between

generating functions; applications to graph theory

5, In the previous contract year I completed &
study of the relation

o .
(5.1) 1+ E:;ann =- exp §f;gnx“ (g > 0Q)
nw= n=-

(which is formal if the series diverge) and determined
conditions that

(5.2) G. Vg

n n

as n-> 0, I showed that the case in which &, = O for

an infinite sequence of n is either trivial or can be
ignored without loss of generality, Hence we take
€n > 0 for all n > c, (It follows that Gn > 0 for all

n>ec.) The chief result was that the necessary and
sufficient condition for (5.2) is that

(5.3) gusnn_s - o(H_),
where the sequence [Hn] is either [Gn] or {gn], We

can thus confine our investigation in any particular
case to one only of the sequences th] and [gn).

whichever we know most about, I also found sets of
sufficient conditions on Hn for (5.3) to hold, These

results I published in [22] and [23]), of which [22] is
the more relevant here,

15
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(5.1) occurs in the eguivalent foim

(9]

'z

L *a .n © I, on
(5.4) 1+ 5 S x"=exp[/d Bx

n=1 B n=1 B.

in the enumerative lheory of graphs, where fn ig the

number of connected graphs on n labelled nodes which
have a particular property and Fn is the number of

graphs on n labelled nodes each of whose connected

components has thils property,. We have then found

sufficient and necessary conditions that almost all
such graphs should be connected,

When he read [22], Dr R,C., Read of the University
of the West Indies wrote to me pointing out that my
result (5,3) with Hn il meant that the number of those

graphs on n labelled nodes which are disconnected is
small compared with the number of those which are
connected if and only if the number of those which have
just two connected components is similarly small, It
is interesting that my efforts to get useful conditions
from an asymptotic and analytic point of view should
have led to a result which had a simple interpretation
in graph theory, In Read's interpretation the "only
if" condition is obviously trivial and it is the "ig"
that is interesting, This distinction of depth
shoved, as one would expect, in my own analytic
argument

In the same letter Dr Read drew my attention to
the relationship

Q0 Q0 -t
(5.5) 1 +5 TX? - (1-x¥) ®
T, I:];

n=1

16
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fagsin formal if weries and product diverge) between
tn the number of connecied graphs on n unlabelled nodes
with a particular property and Tn the number of graphs

on n uniabelled nodes each of whuse connected .omponents

has the same property. He asked if I could cstablish
ihe conditions under which

(5.6) TnN tn

as n-» 00, First I found that we could without loss
of generality take t > O (and so T, > ) for all large

enough n; then (after considerable work) that the
necessary and sufficlent condition for (5.,6) is again
(5.3) with the sequence [Hn] either [Tn] or [tn},

This has the advantage that all the work on conditions
for (5.3) in [22,23] applies without more ado, My
proofs and results appear in Appendix 5 which has been
accepted for publication in the Journal of the London
Mathematical Society, The new result can be
interpreted in terms of graphs exactly as Read
interpreted my earlier one,

Read remarks that resultis about unlabelled graphs
are usually more interesting than those about labelled
graphs but also much more difficult to obtain, The
truth of this appeared when I tried to find applications
of my new result, In each of the sets of sufficient
conditions for (5,3) which I developed in [22,23],
there 18 always one which requires a reasonably steady
rate of increase by Hn (in one sense or another), It

appears that, in the unlabelled graph case, it may
sometimes be more troublesome to prove that this
condition is satisfied (though it is very plausible)
than that the apparently more striangent conditions

are, Instead of taking this any further, however,

at this stage, I turned my attention to a more general
group of problems which I describe in the next section,

17
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Asymptotic enumerative problems in graph theory

6, I have not worked out fully any of the results

(which arc in any casc preliminary) described in this
section, In particular, I have nmot constructed
rigorous proofs nor written them out, One can never
be alwoulutely sure that one is right until this has
been done and this section should be read with thisg
caution in mind, None the less the ideas scem
interesting enough to be worth reporting,

Towards the end of the contracl period the work
described in §5 led mo to consider the problem of
relating F‘n,fn.'l‘,1 and tn when n is large, As stated

in 85, I have already found ¢[22] and Appendix 5 of
this report) necessary and sufficient conditions that
Fn.u tn and that anu tn, but 1 have now found ibhat

(6.1) Ty ™ty * Tytp g1 + Tty o+ 000

We might hope that this would give us an asymptotic
expansion of Tn for large n in terms of tn'tn-l"" ,

1f the latter are in descending order of magnitude,
This is only true if certain conditions are satisfied,
The succeeding terms in the expansion do initially
get smaller but this may not persist, The later
terms are not all so simple in form and there arc a
large number of them, The point that the first term
of an expansion iz not an asymptotic approximation
merely because the second term is of lower order, but
only if the sum of all the other terms is of lower

order, was made by Ford and Uhlenbeck [7], but in their
examples the result was in fact true; their remark was

18




Just a correct statement of what constitutes rigorous
proof In mine, I can produce a quite simple
counter-example which shows that we must saiisiy the
more stringent conditicn or our result may in actual
fact be falsme,

While (6.,1) is interesting Aand attractively simple,
it i8 useful to deduce from it that

(6.2) t, = Tn +'<1Tn + T +

-1 2

P e F 3

n-2

since we are more likely to know Tn than tn' 1 seem
able to find siwilar results for Fn and fn' viz,

n n
Fn - fn + (1> Flfn-l + <2>F2fn-2 + ...

and so0 on,

We need next an asymptotic relationship between
Fn and Tn' This depends on a famous theorem due to

Polya [16], developed and applied by Harery [10],

de Bruijn (Chapter 5 of [1]) and others; in its general
form it cannot be stated as simdly as (6.1) and (6. 2),
but 1in Bpucirl casers 1t can be used very effectively,
The interest os all these relationships lies in the famct
that Fn is usually the e¢asiest number to calculate while

fn’Tn and tn are, increasingly in that order, the more
interesting both theoretically and for applications,
If we take as & particular example the simple form

of graph in which every pair of nodes is, or is not,
Jjoined by just one undirected edge (and there are no

19
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slings), we have Fn - 2N and so Gn - 2N/n!, where

N = n(n-1)/3, It scemz clear that our conditions are
satisfiod and so we get mn asymptotic cxpansion for
tn' I used Polya's theorem to find an ssymptotic

where ¥, (n) is a polynomial of degree k in n which

can be readily calculated by my method for

k=-1,2,3,4,,., . The result n!Tncu ZN was Rlready

known [7) and a few weoks ago a paper by Oberschelp
{15] appeared whick gave the result

n!T, = 2“(1+¢1(n)2‘“+¢2(n>2“2“m(n52'5°/2 )

where Gk(n) is a polynomial of degree 2k, (I can show

that Gk(n) is divisible by (kil) . My own corresponding

error term deduced from (6,3) would be O(nez'dn) and I
have not yet discovered why Oberschelp gives the larger
one), Using the expansion of Tn given by (6.3) in

(6.2), we have an asymptotic expansion of ty-

If we restrict each graph to have just p edges,

we may write an’fnp'rnp’tnp for the numbers

corresponding to Fn'rn'Tn‘tn' It looks as 1f more

complicated results of the same kind should be
obtainable for an"np'T but I have not gone

np’ np’
far into this yet,

i




In particular, however, if we take tho same example
88 above we have an “ip and it iz known [ 7] that
fnpru an provided that p > n log n, and that Polya has
proved that

(6.:) l3.‘1‘,”)""" an ’

provided Ip-}NI- 0o(n), From this it can be deduced
that n:tnpng Oberschelp has proved (6.4) under

the wider condition that Ip—&Nl < cnd’?  for suitable
C. I seem to be able to do more, viz, to find an
asymptotic approximation for the difference n!Tnp - Fn

and that under the still wider condition that

lp-iNl - O(nz"t') for any positive £, But all this
requires much more work,

p

The previous investigations which gave first

approximations to the particular examples of fnp' Tn
and tnp above were all undertaken because of the

relevance of the results to statistical mechanics
{4-7,17] and chemistry [16], The theory of graphs,
although heavily investigated as a fascinating branch
of pure mathematics, has many applications [1], We
might expect that the asymptotic theory is likely to
find its applications mainly in mathematical physics
and expecially in statistical mechanics, Since
physicists have shown an interest in the subject, 1t
would seem useful to develop a coherent theory, as
general and complete as possible, There appear also
to be applications [11] to the theory of logical
relations,

p
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Appendix 1

Rotatable Partitions

by E.M. Wright?

[To be published in the Journal of

the london Mathematical Society]
1. In what follows all small latin letters denote
ron-negative rational integers or functions all of whose

values are non-negative integers. By a d-dimensional

b-restricted partition Y of n, where d >0, b > 0, we

understand a solution of the equation.

(1) n= Z y(xl,xz,...,xd),
xl.ng . .-yxd,

where every y £ b and
7 / /
y(xl'x2,'-c’xd) ZY(xl,ng...,xd))

whenever x; £ xi for all 1. We may take b = oo when we

fThe research reported herein has been sponsored by
the European Research Office, United States Army,

24
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shkall

1]

211 tbe partition torestricted. The only other

case of importance is that in which b= 1: such a

partition we call a unit partition (more correctly, a

partition into units). We write q(d,b;n) for the number
of d-~dimensiocnal b-restricted partitions of n. If we

sum with respect to X441’ We see that

(2) q(d+l,1;n) = q(d,00;:n).

25

b




2. We require the following lemms,

Lemma . Let p be a prime number, d = pt

transformation such that TY is the identity. If S is a

and T be a

finite set closed under T, then the number of members of

S not invariant under T is divisible by p.

Corresponding to every member s of 8, we construct

the set Z(s), viz,

s.Ts,Tzs, . .,Tc-ls,

where ¢ is the least positive integer such that T = 8,
Then ¢ £ d; 1let us write d = uc + v, vhere 0O v <c,
We have 5 = T9 = TV(T)Y% = TVs and so v = 0, by the
definition of c, Hence cld.

Clearly Z(s) C S, Again, if 8' C Z(a), then
Z(s') - Z(s); hence any two sets Z(sl) and Z(sz‘)
either coincide or are disjoint, We have then all the
members of S arranged in disjoint sets Z(Sl)’ Z(sz)'

if s i8 invariant under T, then c = 1, For all
other 5 we have ¢ > 1 and 80, 1f 4 = pt, plc. Hence all
the 8 not invariant under T are arranged in disjoint sets

and the number of members in each of these sets is a

26
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multiple of p. Hence the total nuamber of 8 not invariant

: ' under T is a muitiple of p,

We now take the set 8 to be the set of d-dimensional

-

b-~restricted partitions Y of n, and T to be the

; transformation Y' = TY such that

y'(xl,xz,...,xd) - y(xz,xa,...,xd,xl).

The conditions of the lemma are clearly satisfied. Let

us call any partition Y which is invariant under T, 1.e.

one for which

y(xlyxz) . --’xd) - Y(XZ,XS. .. opxd)xl)

for all sets rl,xz,...,xd, a rotatable partition and let
q'(d,b;n) denote the number of d-dimensional b-restricted

rotatable partitions of n, Then our lemma gives us at

once the following theorem.

E Theorem, If d = pt, then
| ald,b;n) = q'(d,b,n)  (mod p).

| We observe that nothing like (2) is true for the q'.
|

27




3. it has long been conjectured that the

generating function for q(d,oo0;n), viz, ) !
a0
Q; - Qd(x) -1 + 2:;q(d,a>;n)x“
A,

is equal to

@ ._<d+k-€)
Ry = Ry(X) = H (- x5 \EL/ w14 ra,nx®,

where <%;f;%> takes the value 1 for k = 1 and otherwise

denotes the usual binomial coefficient, For d = 1, this
conjecture is true and its almost intuitive proof is due
to Euler [4]. Macmahon [5] proved the conjecture true
for d = 2, but neither his proof nor that of Chaundy [2]
is at all simple, Attempts to produce a direct (i.e.
combinatorial) proof for d = 2 have not got very far,

Cheema and Gordon [3] found a combinatorial proof that

[» o] @O
(1 -x1 T_zr (1 -x5"2%a1+ Zl a(2,2;n)x2,
k- n=1

but it is not trivial and its further extension looks
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difficult, [Recently [1] the conjecture has been
disproved for @ = 2, essentially by showing that
q(d,0;6) + r(d,6). The authora of {1] do not give the
details of the calculation (which they describe as "more
tedious"), but its nature is clear, They have also used
a computer to calculate g(d,1;n) for d £ 8 and a range

of n,

The theorem of §2 enables me to give in €5 a very
simple proct of the falsehood of the conjecture for d = p
or d = p -1, This theorem might also provide a test
for aay other conjecture, When d is a prime power, the
theorcem also provides a simple check of the agcuracy of
computed values of q(d,1;n) and q{d,w ;n) for fairly
smiall values of n,

It is interesting to learn that Ry(X) is not the
generating function of q(3,00;n) and it would be of some
interest to have a more plausible conjecture as to what
is the ccrrect generating fuvnction, But the case of
q(2,00;n) shows that it is unlikely that any such
conjecture would help us greatly to prove what is the
generating function, In that case, our knowledge of
the generating function has not enabled us to produce

a simple proof or a direct, enumerative proof.
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In {6} I showed that the generating function for the

pumber ~f solutions of (1) for d = 3 subject to Y

§¥(0,0,0) £ a, ¥(1,0,0) £ b, y(0,1,0) L ¢ (bga, cga)
and
y(u,v,0) = 0 (uw32)
is
L b ¢
é ::— v_c;'((u'v)gaw-wsb-ugc-v g

where
t
6§ = | a1 -x%-1,

Here ={u,v) is a polynomial in X whose term of lowest
degree in X is of degree §(u-—v)2 + %(u+v) -1, The
«(u,v) can in theory be calculated from (increasingly
elaborate) recurrence relations, In particular,

*(u,v) = o(v,u) and
04(0,0,0) = 1, o(0,1) = <(1,0) = =X, *(0,v) = 0O (v22).

I am investigating the next step, in which we allow

y(1,1,0) to bave positive values, but the work is not

simple.
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4. The values of q'(d,1;n) for the smaller values
of d and o can be readily calculated by PRUmeranting the
rotatable unit partitions, Thia is pPRrticuiarly easy
when d is g prime, the most 1ntereat1ng case from our
point of view.

The values of q9'(d, @ ;n) can we deduced from those
tor q'(d, 1;n') for p' = 1,2,...,n, since a rotatable
unbounded partition of n can be dissected into sultable

unit partitions of n', where n = z_n'.

The values are given in the tables, It p > 3, where

P is a prime, we have
9'(P,1;1) = q'(p,1;p+1) = 1, q'(p,1;2p+1) = $(p+1),
9'(p,1;n) ~ 0 (2<ngp, p+24ng2p, 2p+2<ng3p),

0 (p,1;3p11) = p?aq) 4 g,

Also
q'(p,00;n) = 1 (1gngp),
q'(p,w;n) = 2 (p+1gng2p),

Q' (p,® ;2p+1) =~ }(p+s),
Q' (p,00;n) = A(p+7) (2p+2<n3p),

Q' (r,® ;3p+l) = é(dﬂ)(cna) + 3,

KHY




5. Here we compare r(d,n) and
q{d,® ;n) = qfd+l, ;n) for two classes of d, We take p ) 4
an odd prime. All coungruences are to modulus p. We

write sltx)«v 5,(X) to denote that

¢ 0] o0
3,00 - 8,0 = ) ax"w 0 ax".
n=0 n=2p+1

First let us take d = p. From §4, we have

1 (1<ngp),

q{p,;n) = q'(p,c0;n) =
2 (p+1¢ng2p) .

Hence

[e o]
Q =1+ Zq(P.w;n) v (1 - X7 o+ xPYY
p n=1

2 0 (k¥ 1)
|
(\k'l 1 {k m 1)

(1 - xHP = 1 - xPY,

Again

and
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Hence

8

(e
R = (1 - x¥) \ k-1

| 4 K

b

~ (1 - X711 - x3)"P(y - xPHy-1
~(1 - x)'1(1 - xzp)"lu - x"ﬂ)"1
v - 03+ x2Py (1 + xPHY Q, + x2P

and so

r(p,2p) % q(p,00;2p),

Next let d = p - 1, We remark that

q(d,0 ;n) = g(p,1;n) and that

1 (n=1, p+1),
qa(p,1;n) = q'(p,1;n) =
o (2<ng<p, p+2<ng2p),

so that
- p+l
Qg = Qp g~ 1 +X + X7,

We have

[3.2) _( p+k-3>
- - - k-1
Ry = R,y 11:1[ (1 - x*) ‘
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It is easily seen that

1 R 1),
p;-::;a - -1 (k = 2),

(o] (k & .,2)

We have then

Ro g~ - 0™ a1 - xB) Py _ yP¥y-1ey _ yp+2,-upn
V(L + X)L+ XPPy (1 + xPHy (1 L P2
~(1 +X)(1 + xP*T _ P2, yip)

~ 1 +X +xP_ P8 42

and so

r{p-1,n) % q(p-1,00;n) (n = p+43,2p).

34

i¢




L

11

35

Eld
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Table of q'{( d,1;n)




Table of q'(d,w ;n)
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11

o\%

10
11
12
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14
15
16
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13
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11
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22
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36
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Appendix 2

(¥

An ideptity and applications

by E,M, Wrightt

[To be published in the American
Mathematical Monthly]
1, In what follows all small latip letters
denote integers positive, negative or zero, X,Y
are any complex numbers such that [X| <1, |Y] <1,

We write

a
U, ~1
§a = 0 (a<0), §0 -1, Ea = l:l (1-X") (a>0).

1]

We use Z to denote summation over all u and Z
u u
summation over all ugr+s+t-k, In every case all
hut a finite number of the terms vanish, so that

the sum is a finite one, Wo shall prova

! The research reported herein has been sponsored
by the European Research Office, United States Army,.
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Theorem :

xolu-k)y g 3

u u-k r—ugh-ugt—u

@ §n+t-kgt+r-kgr+l-k z;: —gr+e+t-k—u

= grgr-kgsgﬂ—kgtgt—k .

Ve first prove two lemmas,

lonma 1: Ii w > 0, then

X" W=X

w
£, J| 1‘ ayxd)y = ) x¥(xH/Z g 5 yx
=3 x

The result is trivial for w = 1, ¥We can

establish an induction with respect to w, provided

we can show that

w+l x(x+1)/2
(1+¥X" 1) > X 5 5yx ¥

X

- (1-x'+1) E:: xx(x+1)/2 €

X

x"welex

39
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The coefficient of Y~ on the left-hand gside is

x{x+1)/2 w+l+x{x-1)/2
X !xsw-x + X .Bx-l wHl=Xx

- xx(x+1)/2 5 5

- xx(x+1)/2 Y, z

w+l
x wil-x (1% )

which is the coefficient of Y* on the right-hand side,

Lomma 2:

- X (xv+x(x+1)/2
2) 3,3, =3, ,, ; -1* x } Sx -
This is trivial if w L O or if w >0, v + w <0,
We suppose then that w > O and v + w 2 O, ¥e put
Y = -X" in Lemma 1 and use the result in (2), We

find that we have to prove that

w
(3) 5 = 3w 11 1-x3%) (w>o0,v+w3o0),

&



T e T e T

1§ 4

€

v <G, the iert-napd 8ide vanishes; algo

: : 1£-vgwandso one of the factors in the product

on the right vanishes, It v 20, (3) 1s immediate

Ifrom the definition of ;.,

By Lemma 2; we have

(t-u)+z(z+1) /2
g‘t-usr-m-k' :r-m-i-t-k-u \‘z:(_“zxz z sz"’rw-k—z’

Xext+x(x+1)/2
5t!'r-k - 5r+t-k2;:('1) x* Exsi-k-x’

~ Ye¥ (t-k)+y(y+1) /2
gt-kgs gs +t-k yZ("l) X l"’y'z’s--y .

If we use these in (1), we fingd that it is enough to

prove that

2 3D g r 2 s &3
u z

U U-K "reugoy y Prig-K-z

- X4yy
S S ;;;:(—1) S §Y§B_y,

where
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e et g

o o p{u-K)+z(t-ud+z(z+1)/2 = ufu-k-z)+zt+z(z+1)/2
and

B = xt+y(t-k)+x(x+1)/2+y(y+1)/2

o t{x+y) +y (y-k-x-y) +(x+y) (x+y+1)/2 .

Selecting those terms on the right for which x+y=z,

ve see that it is enough to prove that

(u-k-z)
(4) gzg"rm-z-k 5;: xu : z Susu-kgr—USQ-u

- y(y-k-z)
grgs-k 5;: X gy"’z—y!r-k-~z+y%s—y

for every z,

Again, by Lemma 2,
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- T ¢_ayV VU (v+1)/2,
!ugr-u "rg‘ 17 X v gx'mu—-v !

gs—kz(’“' xw(e:--u) +w(w+l) /2, 2

ss-ugu-k = wu-k-w *

- v vy (v+1)/2
5ygz--y 525;(-1) X gvsz-y—v '

L4

8-y Sr-z-k+y

- w o w(B-y)w(w+l) /2
l;rm-z-kgj(’l) X !wgr-z-h-y-w .

We substitute from these in (4), It is then enough

to prove that the coefficient of

viw wWZw (v+l) /2+w(w+1) /2
(-1) X 5v,r"wE"'zg'rm--z-kgrga—k

on each side is the same, i,e, to prove that

v(u-k-z+v-w)
;x ;r—u-vsu-k-w

-y xY(y-k-z+-w)¢

5 .
v Z-y-V I~Z-kK-w+y
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If we put y = X+z+w-v~u in the sum on the right-hand
side, it becomes identical with that on the left-hand

slde, This cospletes the proof? of our theorem,
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2, If a ~» o0, then

0

uy-1
e 5 = H a-x"=",

the generating function of the nunber of partitions
of n into any number of parts, If we let t— o

in (1) we have the idontity

CORE SOUNIND 6 Sz 70 S JU SO 5 S I
u

u u-k’r-ug-u r r-k gs s-k

If we let s —» 00 in this, we have the further
identity

(6) Soxtekly g 3z
u

u“u-k r-u rr-k °

This last identity can be Proved independently by

induction with respect to r, It has an interpretation

in terms of partition theory, but I have not yat found

& direct combinatorial proof

We remark that, if a 0, b >0, then
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1w BB (aw):
2.,
X->1 §a+b a'b!

where O! =~ 1, Let us write ¢ = min(0,k) and

d = max(r,s,t), If ¢ £ d, we have

d
(7) (r‘l"s+t-u-k):

u=c u!(u-k)!(r-u)!(s-u)! (t-u)!

(s+t-k)! (t+r-k) ' (r+s-k)!
ri(r-k)!s!(s-k).t!(t-k)!|

if we let X — 1 in (1), Similarly we can deduce
from (5) that

min(r,s)
1 (r+s-k)!

u=max(0,k) u'!(u-k)!(r-u)! (s-u)’ r.(r-k)!s!(s-k)!

Recently Graham and Riordan [1] have shown that

the solution of the recurrence relation

mn
n+v
® ey = Dy, <2m> (0gmgn)
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in terms of the undetermined CJ is

v~Q

W
-1 - v
2v+1 n
(9) W . = m+v+l m + €> <j mo- v thv (m<a).

An alternative proof to theirs would be to substitute
from (9) in (8) and then seek to prove equal the
coefficients of ‘va on either side of the result,
What is required readily reduces to the identity (7)
with k = 1,

In the same way, tue solution of the recurrence

relation
_ Z (m-v) (m-v+l) g & v/3

= 2m n+v-2m n+v
is

m Zv+1l

L2 - EE: (a-x )gm+v+1§n-m§m-vg1'1-1"m 'IIVV
nm ve0 Sn+-v§n-1--v
47
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and tbe verification

(1) with &k = 1,
~gain let us pu

let X —> 1, We hav

= ()

u=l

of this reduces to the identity

tr=s8=pand k~01in (1) and

e

(f’+ 2p - f;) (:t + p;>2
- P L
2p

which 18, of course, a well-known identity.
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Appendix 3

Stacks

by E.M. Wrightt

[To be published in the Quarterly
Journal of Mathematics]

1, In what follows all small latin letters denote
non-negative integers or functions all of whose values
are such integers, X and Y are complex numbers such
that |X| <1, |Y| < 1 and sometimes Y~> 1, Under
these conditions all the questions of convergence which
arise are trivial and we ignore them,

An n-stack is a solution of the equation

n = 2:: z(x,y),

x,y21

in which every z is QO or 1, z(1,1) = 1,

tThe research reported herein has been sponsored
by the European Research Office, United States Army,
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z(xlyl) =1 = z(x,y) = 1 (1‘5Y$91)
and
z(x4,¥) =~2(x,,y) =1, x,<x, = z(x,y) =1 (x,€ x€xg5 ).

The stack may be represented by n nodes arranged at
the points whose coordinates are x,y as in the figure
(ignore the vertical lines, whether broken or unbroken),
We write s(n) for the number of n—staéks and sr(n) for
the number of n-stacks with just r rows, Our object
here is to study sr(n) and s(n) and a number of
related enumerative functions and to find their
generating functions and certain relations between
them, Finally we obtain asymptotic approximations to
s.(n) and s(n),

We may dissect an n-stack with r rows by drawing
a line parallel to the y-axis just to the left of the
left-hand node in the top layer (the left-hand
unbroken line in the figure), The stack is then
dissected into two parts, If the left hand part

contains ny nodes, it may be read as the graph of a
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l-'illnl-'ln!".ll"'ll'l-|.ll.|l.l.l.|||llnl||lllll-

--.inl'lllll.!.lnl'll.l.l'"lllull.'lvl||.I-l..lu|||'
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partition of ny into not more than r-1 parts, We
write pr_l(nl)for the number cf such partitions and
take pr-I(O) -1, pr_l(-n) =0 (n>). The right
hand part is the graph of a partition of n, into just
r parts, where o, = n-nlzr; the number of such
partitions is readily seen to be pr(nz-r). (Remove
one node from each part; there remains a partition of
n,-T into at most r parts,) The generating function

of pr(n) is well known to be

r 0o
gr - Sr(x) - T—[(l-x“)-1 - Zpr(n)xn
k=1 n=0

(see, for example, [1]). We write §o = 1 and
T g =0 (a>0),

We have then

s (n) = . %_npr_l(nl)pr(nz-r)
1

and so the generating function of sr(n) is
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o0 )
1) }__sr(n)xu - z:: 5:: pr_l(ni)pr(nz-r)xn

n=r a=r n1 +n2-n

00 n, & .,
- xrg;_;pr,i(nl)x 15;09,.(!13)" - X5 5

Hence the generating function of s(n) is

o] m
(2) Zs(n)x Z 2 s (mx° Zx X8
n=1 r=1 nwr
54




2, Yo write sr(b,t,n) for the number of n-stacks
with r rows, b nodes in the base or bottom row and t
nodes in the top row, We write sr(,,t,n) for the
number of n-stacks with r rows and t nodes in the top.
row; similarly sr(b,,,n) is the number with r rows and
b nodes in the base, Again sr(,,zt,n) is the number
with r rows and not less than t nodes in the top row,
Finally, 1f the number of rows is unrestricted, we omit

the suffix r, Thus

(3) Sr(b:.vn) - Zsr(b,t,n),s(b,..n) - Zsr(br-:n)
tal rpl

and so on,

An n-stack with r rows, base b and top t may be
dissected into three paris L, M, R as in the figure by
drawing the two unbroken vertical lines, one just to
the left of the left-hand node of the top layer and one
to the right of the right-hand node of the top layer,
(The broken lines should be ignored), The left hand
part L is the graph of a partition of ny (say) 1into not
more than r -1 parts of which the greatest is b1 (may).
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T = = T

We write pr-l(bl'"I) for the number of such partitions;
it is well known [3] that

r-1

Pp_q(X,¥) =1+ ):_1 n};_ Pr_ 1<b1.n1)r -Hu-&x“)'l.

The middle part M contains just rt nodes, The right
hand part R is a partition of By into not more than

r-1 parts of which the greatest is b2, where
n~- n1+n2+rt and b = b1+b2+t, We have then

L (b,t,n)- : Z_ (b ’ p (b,,n )
r by +by=b-t 0y 4mmn-rt Pro1{P1:81IPp_1 (P20
and s0
(4) S_(t;X,7) = Zsr(b,t,n)ben

b,n

rt,t 2
- XY (P, _y(X,T))

r-1

- x"Yt]—Iu-u")'z.
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k=1

and

6) S(X,Y) = 2_S_(X,V).
rzl

57

We write
S0V = D s (b,
b,nyl
and
S(X,Y) = 2 _s(b,,,n)¥x",
b,n2l1
By (3) and (4)
(5) S.(X,¥) = 2_S_(t;X,)
ta
r-1
- T @-yx") "] | (1-n) -2




Since s(n) is the number of n-stacks, with no

restriction on base, top or number of rows, we have

8(n) = Zs(br .yn)
b

and so

Zs(n)x“ - Zs(b,,,n)xn - S(X,1).
n b,n

Using (5) and (6) we see that this is in agreement
with (2),
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and

. By the definitions, we have

3r(.02t¢u) - zz:sr(-rurn)

uzt

w
Sr(u;x,l) - gggsr(,,u,n)xn

ru, 2
- X gr-l

by (4), Hence

and

(7

whe e

fo's) @

2 ru rt
§s(.ztn>x“-s D x ~ x¥ts
p=i T PER r-1 =1t r-1-r

0 os)

>

£_sC.,2t,n)x" = Zxrtgr-lgr = F(x,xY),
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[v)
oy vy - r H
F(X,1) r;;r-lgry ) :
» so that
[0 4]
(8) F(X,X) = S(X,1) = Zs(n)x“.
n=1




£0

(9)

that

By (5)

Let us write

o0
Wy = W (X) = 5:%s<b,.,n)x“.
n-

S(X,Y) = E::OJ

P,
b1

b

2
Spag (X (1-¥0) = 5 (X, )

and so, summing over ¥, we have

Substituting from (9) and equw
Yb

)

we have

SCLY (v = X (1-v0) + 50x, 1)

--ng the coefricients of
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T

T+ i e

i Sm

2
@y = X5, Wy = X (1+%)5,,
2 b
(10) a)b— qub_14PXLme2 - X wb (b23),
From this we can easlly calculate that
Wy = x353(1+X)2, hi - x454(1+x)(1+2x+x3),
wg = x5§5(1+x)(1+:s~x+2x3 x*xdy .

Alternatively we may proceed as tollows, Ve

remark that a(b,,,b) = 1, 1f n>b, we may remove the

base b from the stack, We are then left with a stack

with base ¢ (say) which may have occupled any one of

b-c+41 positions in the original stack, Hence
b
s(b,.,n) = E::(b-cfl)s(c,,,n-b) {(n>b},
c=1

which leads at once to

b
W = X001 S (bec+dd ) (b31),
Cml ¢

From this (10) follows,
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5, From (1) wa can find aan oxpression for sr(n)
which gives us very easily the behaviour of sr(n) for
fixed r and large n, The method 1is closely related

to that of {4], We note that

"

e7ll - [ a-x" | Ta=x)

v=1

J—— |

[ Y

<

r

- ' oy A, V)
I-ll e‘(v[) 1 (’X) '

where the last product is taken over all primitive

v-th roots p of unity and A(r,v) = [r/v]+[(r-1)/v],
Hence by the elementary technique of partial fractions,
we have

r AMr,v)

XTE 8 = D 3 D Alrwvip,t) (gt
v=l po(v) t=1

and 80, by (1),

r
sr(n) - E::P(r,v,n)

v=}
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where

Xr,v)

P{r,v,n} = §:j A(r,v,e,t) n (a+t~-1)!
p(v) tz-'; ALY v 3= 3 28
alr,v)

« 3 B(r,v,t,mnt"t
t=1

and

B(r,v,t,n) = ZC(r,v,‘opt)pn.
p(v)

Hence B(r,v,t,n) depends on the residue of n (mod v)

but not otherwise on n, We say that P(r,v,n) is a

«emi pclynoz=ial iu u of degree A(r,v)-1 and to

modulus v,

We observe that A(r,1) = 2r-1, A(r,2) = r-1

Alr,v) < 2r/3 tor v > 2, For large n and fixed r we

have then

r-2

8 .tn) - F(r,2,n) + 0{(n ),

where P(r,1,n) is a polynomial of degree 2r-2 in n,
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Usiag a method similar to that of (4], we can cvaluate

the leading coefficients in P(r,1,n) and we find that

[§r]

1 Z ﬂ (n+n)2r-2t

—_— r 4 O(nr'l),
ri(r-1)! t=1 (2r-2t)!

sr(n) -

where r>1, R = '}r(r+2),_{'11 = 1 and

N N r(2r2+1) N - 25r2(2r2+1)2+6r(6r4+10r2-1)
TeTTe—e— )
2 72 3 259200
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6, ¥e¢ cannot deduce the aaymptotic behaviour
of s(n) directly from a knowledge of its gomerating
function, at least in the form given in (2). But the
results of § 3 enable us to find what we want, First

we remark that
o0
(1-Y)F(X,Y) = E::(gr_15r = Speoabe )Y
r~1
and so0

0
A1) s @-DFEY - 2_——1(51--15;- B _,5. )

- lim § L 52

g r-1-r oo’
where
00D a
(12) 22 =« [ Ta-x%"2 e ) qumx®
k=1 n=0
(say).

€6




Again wn heye

. T . +1 7
XYF(X,¥) = );br_zs:rxv’ - Qng,_zgr_le”
= 215 Y (%) (1-xT)
r

= XF(X, Y)-(14+X)F(X,X¥) +F (X, x2y)

and so

X(1-YIF (X, ¥) - (14X)F (X, XY) +F(X, X%Y) = o

Letting Y —> l, we have

@ ®© 0
Zq(n)x“*1~<1+x>Zs(n)x"J:s(..;z,n)xn -0
n={) nw=l N2

by (7), (8) and (11), Hence

B(n’])"‘ﬂ(n) - q(n)+e(,,22,n+1),
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that is
(13) q(n) = s(n)+s(n+l)-s(,,22,n+1) =~ s(n)+s(,,1,n+1).
Any (n+l)-stack with a top of one unode can be
converted into a unique n-stack by removing that one
node, The reverse process is not unique, Hence
s(n) € 8(.,1,n+1) £ s(n+l),
the latter inequality being trivial, Hence, by (13),
2s(n) € q(n) £ 2s(n+l),
From this, we have
(14) $a(n-1) ¢ s(n) < 3a(n),
If we write

g(n) = 8-1(3%n%) % exp(2n/(n/3) ),

we hive, as n —» 00,
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a(n) = 28(n) (1 +0(a~}))
by [2]. Clearly

B(a-1) = @(n)(1+0 (a~%))
and so, by (14),

s(n) = $(n) (1 +0(n"}))

as n —» oo, This gives the asymptotic approximation

to s(n),
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7 The essential relation (13) can be
establisbhed by a wore direci s*udy of ihe n-stack,
This has some interest in itself, We remark first

n .
that goo - E;:p(n)x , where p(n) is the number of
unrestricted partitions of n and p(0) = 1, Hence,

by (12), we have

q(n) = }Z: p(nydping),

nl +n2-n

If we talke the graph of any partition of ny and the

graph of any partiiion of n, and arcange them back-to-

back we have an n-stack, where n = n, 4o, , This is
the reverse process to the dissection of a stack in
81, A little consideration shows that any n-stack
with top t can be constructed thus in just t+l1 ways
though, of course, with different LysDg. For, in the
figure, we may separate the n-stack by any one of the
vertical gstraight lines (broken or unbroken) intc two

partition graphs, ‘Hence

(15) q(n) = 5::(t+1)s(.,t.n).
21
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We consider again an n-stack with top t. We
can place a single pode above the top row inm just
t ways to form an (n+l)-stack with top 1, Nor can any
one of these (n+l)-stacks be constructed in thi= way

from any other nastacks, Hence

(16 s(.,1,041) = 2 _ts(.,t,n).
tol

But trivially

7 s(n) = ZS(.,t.n)
t>1

and (13) follows at once from (15), (16) and (17).
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.O.1L, Atkin,

-

Note added at proof stage, Dr

to whom I had communicated my results in this
paper, drew my attention to [5], in which Auluck
considers a combinatorial structure equivalent

to the unrestricted n-stack, Auluck finds the
generating function on the right-hand side of (2)
and the asymptotic approximation s(n) ~ @(n) ,
but not my result about the order of the error,
The other results of the present paper do not
appear in [5] and the methods used in the two

papers differ entirely, Auluck also shows that

00 (23}
Zxrgrgr-l - gcz Z(_l)n—lxn(nﬂ)/z
r=-1 n=-1

a result which Atkin had conjectured from results
obtained on a computer and which I can prove very
simply, Auluck also studies other combinatorial
structures on which I have recently done some work,
Again there is surprisingly 1little overlap, either
in methods or results and I uope to publiéh further

results later,
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Appendix 4

(9]

Rumber of arrangements

by E.M., Wright T
[To be published in the Mathematical Gazette]

In o recent article [1] in this Gazette, Collings

discusses the number of arrangements of n railway trucks |
on k sidings under a variety of conditions, Let, qk(n)
be the number of ways of arranging n indistinguishable ’
trucks on k indistinguishable sidings or, what is fhe s
same thing, the number of partitions of n into not more
than k parts, Let pk(n) be the number of these
arrangements which use all k sidings, that is, the number
wf partitions of n into exactly k parts. Collings
describes the determination of pk(n) and qk(“) as an
unsolved problem in partition theory; this is not quite
correct,

t The research reported herein has been sponsored by

It is convenient to write

qk(n) = 0 (n<0), qk(O) -1, qo(n) =0 (n2l). (1)

the European Research Office, United States Army,
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It ie saagy to sec that each arrangement of the n trucks
on the k sidings is cither (1) an arrangemcnt which uses
all k sidipgs or (i1i) one which uses not more than k-1
sidings, Hence

g (n) = p (n) + q ;(n) (n21), (2)

Again, if we consider an arrangement of n trucks using
all k sidings and remove a truck from each siding, we
are left with n-k trucks on not more than k sidings;

the reverse process holds alro. Hence
Py (n) =~ qk(n~k). (3)

This reduces the determination of pk(n) to that of
q, (n).
Using (3) in (2), we have

qn) = q (n-k) +q _;(n)  (k21, n31), (4)

Now let us write
w-
Q = Q. (X) = }:oqk(n)x“ (k30, | x]<1). (5)
n-

Multiplying (4) throughout by X" and summing over n, we

have
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K K .

and so

k
q = | [(1-x571, (7)
5~1
since Q4 = 1, This result is due to Euler [2].
We ignored the question of the ccnvergence of the
series in (5), If we regard Q, as defined by (7), it
is trivial that Qk can be expanded in a power series
convergent for|X|< L. Again this Qk clearly satisfies
(6) and so the coefficilents in the power series satisfy
conditions corresponding to (1) and (4) and can be
identified with the qk(n).
While in theory q (n) can be calculated from (5)
and (7), or indeed from (1) and (4), for any k and n,
this process docs not lead to a simple formula like those
found by Collings [1] for the number of arrangements
under other conditions,.
The form of q,(n) has been studied by Sylvester [6],
Glaisher [3], Rieger [5] and in [4] and [7]. Sylvester's

and Glaisher's papers are lengthy and detailed, However
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we can find out something about qk(n) by applying the
weli-known elemcutary technique of partial fractions Lo
Q.

We must first find the lincar factors of Qgi. We

have

1 -xP - TTa1 -5,

where 7 runs through all h-th roots of unity, i.e., all
h

values of ¥ such that v = 1, Let @ be a primitive

h-th root of unity, i.e. fh = 1 and pt * 1 for 1 £t < h,

Then ¢ is an hu-th root of unity for all positive
integral u and so the factor 1 - eX occurs just [k/h]
times in Q;l. Here |F] denotes the greatcest integer

less tha " or egual to F. Hence

K k
le-ﬂu-xs)-p

(1 - X)[k/h],
s=1 =1 ¢(h) ¢

where the last product is over all primitive h-th roots e

of unity.

I1f we split Qk ainto partial fractions in the usual

way, we have
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k  [xA]
Q - ﬁi; Eﬂ_ 5 _ Alk.h.p £)(1 — nxr~t
=  h=1 p(b) * v

~~
[+]2]
~

t=1

and so

k
() = 2 _R(k,h,m), (9)

where

[k/h]

R(k,h,n) = 5:: n Alk,h,p,t) (o¥t-1)]
e(h)P E;; P®) et

[k/n]

ST B(k,h,p,v)n’"t
vm]l

- }__ C(k,h,v,n)nv”l
vel

and

C(k,h,v,n) = ZB(k,h,v,n)Fn .
g(h)
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Since eh = 1, we see that C(k,h,v,n+h) =~ C(k,h,v,n) and

so C(k,h,v,n} depends on thc residuc of n (mod h) but not
otherwise on n, Hence, tor large n, C(k,h,v,n) is
bounded and R(k,h,n) = O(n[k/h]"%. Hence from (9) we can

deduce that
g () = RCk,1,m) + o(nlPK]-1) (10)

If h =1, the sole value of p is 1 and so

k
RCK,1,n) = ¢ ACk,1,1,t) (o+t-1)!
t=1 nICE-1) T

nk"'1 k-2

If we multiply (8) throughout by (1 - X)k and let X — 1,

we have

Ak, 1,1,K0 + 1im (1 - 0K Q(x) = 1/(k1),
X->1

Hence, for large n,

k-1

qk(n) - ET?E:ITT + o(nk—2

), (11)
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Thus by quite elementary reasoning we have learnt
quite a lot about qk(n), especially (9), (10) and (11).
The last result can be improved substantially with enough
labour; in fact (see [7])

51 (k) (21 (RS otn
. T44k-1) (k=27 T

g ny = £ k-3,

if K > 7 and K = 3k(k+1). For amaller values of k the
exact form of qk(n) can be readily determined by partial

fractions,. Detailed results are given in [4].
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Appendix 5

A relationship between two sequences IIl

by E,M, Wrightt

[To be published in the Journal of
the London Mathematical Society]

1, In an earlier paper [2] we studied two sequences

[gn], [Gn] whose relationship was defined by

00 @
(1.1) 1+ ZGan - exp( Z gnx“>
n=1

n=1

(to be interpreted formally if the series diverge for all

non-zero X) or by the equivalent

-1
(1.2) nG = ng, + g;;'sgan_s .

(1.,1) and (1,2) holds good when n!gn is the number of

tThe research reported herein has been spcasored
by the European Research Office, United States Army,
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conuected graphs on n labelled nodes with a particular
property and n!Gn is the number of graphs on n labelled
nodes each of whose connected components has that
property, See, for example, Gilbert [1],

In [2) I took g, > 0 and studied conditions under
which

(1.3) G, ~ g

as n —» @, We found that, without loss of generality,
we could assume that 4 > O for all sufficiently large n,
The divergence of the power series in (1.,1) for all non-
zero X was a necessary condition for (1.,3). An example
showed that, even when combined with a condition of
reasonably steady increase of 8! thi$ was not

sufficient, A necessary and sufficient condition for

(1,3) was that

n-1
(1.,4) Z:: H_H - o(Hn)

-3
s=1 sSn

as n — oo, where the sequence [Hn] is either {Gn} or

[gn], The advantage of (1,4) i1s that we need information
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about only one of the sequences (Gn, {gn}. In [2] 1
found two sets of sufficient conditions on the rate of
growth of H for (1,4) to be true, In [3] I studied ;
further necessary condition (given that Hn satisfies a
condition of fairly smooth growth) and showed that it was
not sufficient, The gap between these necessary aad
sufficient conditions was now not great,

When Dr R.C. Read read [2] he wrote to ask me

whether I could find conditions that
(1,5) T o~ ot

a8 n —» o, where

QO [ 9] k -t
(1.6) 1+ZTnx“-ﬂ(1-x) k
n=1 k=1

(again interpreted formally if the series and product
diverge), Here tn is the number of connected.grgphs on
n unlabelled nodes with a particular property and Tn is
the number of graphs on i unlabelled nodes, each of whose

connected components has that property. I show here that
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the necessary and sufficient conditions on {Tn} and
{tn] are precisely the same as those on {Gn] and {gn),
This means that all the results about (i,4) in [2,3]
apply to the new problem,

Dr Read pointed out that, if we take Hn - g (1.4)

n’
has the following meaning, The number of graphs on n
labelled nodes which are disconnected .s sm: 11 compared
with the number which are connected if, and only if, the
numbexr of them which have just two connected components
is similarly small, My result here extends this

statement to the graphs on unlabelled nodes,




2, We suppose tn >0 for all n, Differentiating

(1.5) logarithmically, we have

[}

n n
Zn'rnx R nt_X
1+ 37 x" T 1-x" !

o G o0
- L Zont ™ a ) v s,

n=1 m=1 s=1
where
(2.1) sV, = thm.
n|s
Hence

00 @ 00
Zn’r x" - st Xs<1+ZThX‘h ;

p=1 0 s=1 8 h=1

and so
n~1
(2.2) nTn = oav o+ S_levs'rn-s'

This relation (2,2) between {Tn] and (vn] is the same as
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(1,2) between (GnJ and {gn], We use this fact i

follows, It follows from (2.1) and (2.2) that

(2.3)

We prove first the following theorem

Theorem 1, It Tn = O for an infinite segquence of n,

then tn » 0 except when n is a multiple of some d > 1,

Let ug suppose the condition satisfied, Then,

since (2,2) is equivalent to (1.2), Theorem 1 of [2]
tells us that there is a d > 1 such that v = O if d{\n,

Since t, 2 0 for all m, it follows from (2,1) that

t, = 0 1if d+n. This is our theorem,

If the conditior of Theorem 1 is satisfied, but Tn

does not vanish for all n, let us take d to have its

largest possible value, (1.6) becomes

2 = ma \~t
o tm - T )t
n=1 m=1

that is
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X @ m\—t .
RN (L
m=l am w1

/

There canrnot now be an infinity of zero Tdn’ since
otherwime we could apply Theorem 1 agein and, in &p
obvious way, find & contradiction to the hypotheais that
d has ite largeat possible value, Hence there is no
loss of generality if we auppose Tn > 0 for all

sufficiently large n, We shall therefore suppose that
(2.4) t >0 (n>c)
since otherwise T, ~ t, is clearly impossible,

In what follows we write K for a positive number,

not always the same at each occurrence, independent of n,

Ve usme xl,xz for fixed numbers of the same kind,
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3. We prove next our main theoren,

Theorem 2, The pecessary and sufficient condition

that Tn ~ tn is tbgﬁ

n-1
2::3 H - o(Hn)

qm] 8 n-g

where the sequence {Hn] is either [Tn] or [tn],

We have to prove that
(A) T. ~ t

is equivalent to

n-1
) gTaTn-s - o(1,)
and also to

n-1
4) sz;ltstn_s - o(t,),

In the course of the argument we shall consider also

the logical standing of the statements
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(E)) Tn ~ Va !

(%) Vo v tn R
n-1

(3) gvsvn-s - o(vn) .

By (2,3), we see that
A > &) +‘ﬁ,

Again the relationship (2.2) between [Tn] and [Vn] is

the same as (1,2) between [Gn] and [gn]. Hence
B> D =t

by the result of [2] quoted in &1 of this paper. We
shall prove below that

(3.1) G - £,

{3,2) Je— L.




Using these., we bhave

A =B BB P idupfid=r A,

. QN RPN S SRS TS N -
Hence

R <= A <> L

and this is Theorem 2,

It remains to prove (3.,1) and (3.,2), We start
by assuming 3. Let b be the least integer such that
Vb >0, By (2.3) and (2.4), Va > 0 when n 2 c, Then,
for n > b + ¢, we have

Vaob >0, VoVa-b ™ o(vn), Vn/vn-b >

as o —» @, Hence Vi —F Again
min v_ > K.
8>c - 1

Hence, 1f n > 2c¢, we have by (2.,1) and j‘
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which i

n § Ztm< Zv éﬁil V. v = oilv_J,
rm<n/2 uin/2 ® n<n/2 R n-m n
s 4. By this and (2.3)

n-l1 n-1
Zt t < szvn_s - o(vm) - o(tn),

gal 8 078 g3
which is Aé. Hence we have
F =>4 +4.
: . !
It remains only to prove that A - ,3' Assume .o
true, We dednce € from »é Just as we deduced 'f Iirom

3 above, so that we have Ve Mot

3.3)

We now

(say),

n

write

n-1 c=1 D~C n-1

szvn-s - Z + Z +

g=1 s=1 8=C SFwn~¢+1

By ,5 and (3,3), we have

n-c

n-c¢
JZ - 5——"'svn-e. € Ksz_-;atstn-s =

By
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(n2c).

--J1+J2+J3

o(tn).




If w > 2c, then by (2,1) and (3.3)

Now let 1 £ m { mk < ¢, We write Kz for the least
non-zero value of tm, unless every tm =« 0, in which case

we write Kz - 1, By Aﬁ,

Kk

tutnauk = o(tnmmk+m ) tntn-mk ~ o(tn),
- wl-k
'yt nemk Kz O(tn)'

We have then

- 1-k
Jo = Jd, K 2t So(t) 2 Xi¥aoc),
3 1= nEle @ n-uk v’ k<e 2 n

Hence
n-1
2 v

g=1 8 D~B = Jg +Jy +J3 =o(t)) =~ olvy)

and this is Eﬁ.

93




4, Theorem 3, A necessary condition for (1,5)

is that either side of (1,6) diverges for all non-zero

X, ‘4
In this peragraph the words "for all non-zero X"

are understood after every use of the word "divergence"”,

By Theorem 2 of [le the divergence of Zann and of '
Zgnx“ is 8 necessary condition for (1.3). But (1.3)

is equivalent to (1.4) with [Gn] or {gn] for {Hn], Hence

(1.4) implies the divergence of Zunx“ and so, by Theorem

2 of this paper, (1.5) implies the divergence of ZTan

and of Ztnxn. Finally the divergence of Ztnxn implies
the divergence of the product on the right hand side of
(1.8),
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